代表性论文论著:
[1] Zhixing Hu, Jiajia Zhang, Hui Wang, Wanbiao Ma, Fucheng Liao, Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Applied Mathematical Modelling, 38 (2014): 524–534(SCI).
[2] Hui Wang*, Rong Wang, Zhixing Hu, and Fucheng Liao, Stability Analysis of an In-Host Viral Model with Cure of Infected Cells and Humoral Immunity, Journal of Applied Mathematics, Volume 2013, (http://dx.doi.org/10.1155/2013/102757) 1-5. (SCI)
[3] Yanyan Yang, Hui Wang*, Zhixing Hu, Wanbiao Ma, Global dynamics of a HIV infection model with delayed CTL response and cure rate, Advanced Materials Research Vols.791-793, 2013,1322-1327.
[4] Yanyan Yang, Hui Wang*, Zhixing Hu, Fucheng Liao, Global Stability of in-host Viral Model with Humoral Immunity and Beddington-DeAngelis Functional Response, International Journal of Life Science and Medical Research, 2013, 3(5), 200-209.
[5] Yu Fu, Hui Wang*, Zhixing Hu, Wanbiao Ma, Fucheng Liao,The effect of constant vaccination on an SIR epidemic model with infectious period, International Journal of Information and Systems Science, 2012, 8(1),75-82,
[6] Xiangdong Liu, Hui Wang, Zhixing Hu, Wanbiao Ma. Global stability of an HIV pathogenesis model with cure rate. Nonlinear Analysis: Real World Applications. 12 (2011) , 2947–2961, (SCI).
[7] Hui Wang, Bihong Gao, Zhixing Hu and Wanbiao Ma,The analysis of cannibalism on a predator-prey mode, "Proceedings of the 5th International Congress on Mathematical Biology", 2011.6, 2, 276-282.
[8] Zhixing Hu, Sheng Liu and Hui Wang, Backward bifurcation of an epidemic model with standard incidencerate and treatment rate, Nonlinear Analysis, Real World Applications, 2008 (9), 2302-2312(SCI).
[9] Zhixing Hu, Yongchnag, Fu, Wanbiao, Ma, Hui Wang, Analysis of a Predator-Prey XSI Model with Epidemic in the Prey, 第六届生物数学会议, 2008, 200-206(ISTP).
[10] 朱婧, 胡志兴,王辉, 浅谈数学建模思想在大学数学教学中应用, 2011 International Conference on Applied Social Science, 2011.3,147-150. CPCI-SSH.
[11] 刘祥东, 王辉,胡志兴, 马万彪. 一类具有时滞和治愈率的HIV病理模型的稳定性, 生物数学学报, 2011, 26(1), 108-116.
[12] 杨春霞, 王 辉, 胡志兴, 具常数投放率功能反应为x^(1/2) 的食饵-捕食系统的定性分析, 生物数学学报, 2010,25(1), 97-103.
[13] 李冰,王辉, 一类在两个斑块内人口迁移的传染病模型的研究,北京工商大学学报, 2009.1, 27(1), 56-61.
[14] 黄友霞,王辉,苏丹丹,食饵有病的生态-流行病模型的稳定性研究, 生物数学学报, 2008,23(1), 132-138.
[15] 王海强, 王辉,带时滞的嗜菌体传染模型的稳定性分析, 科学技术与工程, 2008, 8(16), 4435-4438.